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Abstract

In the paper the method for construction of the mixed multiresponse incomplete
model, that is the model with fixed and random parameters which characterize the
multitrait experiment in which a different subset of the traits is observed on each of
the disjoint subsets of experimental units, is considered. This model is transformed to
the form of the mixed linear model. The formulas for estimators of fixed parameters
and predictors of random parameters with utilization of the REML estimators of the
dispersion components are given.

1. Introduction

1.1. Linear mixed model

Let us consider the model of the observed random variables vector y in the
form

y=Xp +Zu-+e (1.1.1)

where X is a known matrix of full column rank, Z is a known matrix, g is the
vector of fixed parameters, u ~ N(0,G), e ~ N(O,R), u and e are uncorrelated,
and matrices G and R are nonsingular. Hence y ~ N(XB,V), where
V=2ZGZ' +R.

Let it be possible to write V as

V=YV, (1.1.2)

Key words: mixed model, multiresponse model, best linear unbiased estimator,
best linear unbiased predictor, REML method
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where y; are some unknown parameters, V; are known matrices, c is the number
of the parameters y;.

There are different possible ways of decomposition of the matrix V. An
example was given by Henderson (1986). He assumed that the vectors u and e
can be correspondingly partitioned into subvectors u;ande; ,i=1,2,...k, such
that

var(w;) = G;;g;; , cov(u;, u}) = Gijgij ’
var(e;) = R;r;, cov(e, e) = R;J-r,-j 1

where G;; and R;; are known matrices and &;j and ry are unknown parameters.
If such subdivision exists, one can write

for some matrices Z;, i =1, 2, ..., k, and

V=2(3 G0)Z + Y Rl oy,
i J

where
G O 0 0 Giy... 0
=0 R ot g = S
0 0 0 0 o0 0
0 0 ..Gy, 0 o0 0
Gj, = %ol 0 , Gha= Y G.ZZ § PoBa)
0 0 0 0 o 0

O1=811, O3=g12, ., O =81 Op1 =209, ...

R, 0..0 0 Ry...0
0 0...0 0 ...0
N I 0 T L

)

0 0...0 0 0 ..0
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0 0..Ry, 0 0..0

00.0 0 Ry,...0
N i e '22._._

00..0 00 ..0

oy =rqy, a2=r12,...,ak=r1k, Ope1 =792 «-- »
Then V = 2 v:V; with y; equal to 0; or oy, V; equal to ZGjZ' or R;, , respectively,
7

for adequate i.

1.2. Estimation and prediction

In the model (1.1.1) we are interested in estimation of the vector g and
prediction of the vector u. In the literature different ways of solving these
problems are known. One of them is presented by Henderson et al. (1959).
Henderson chooses the estimator of g and predictor of u so that the Jjoint density
function of y and u

1 E L
fiy,u) = g(y|u)h(u) = Const- exp [-5 (y-Xp - Zu)R\(y- XB - Zu)- SuG u ]
1s maximized. In this way he obtained equations

_ X’R‘ly
Z’R"ly '
Mao (1982) obtained the same equations in another way. He assumed that the
linear predictor of any given linear function of vectors B and u should minimize
the variance of prediction error and simultaneously should be unbiased, i.e.

expected values of predictor and predictant should be equal. Solutions of (1.2.1)
are the following

A (1.2.1)
u

XRix: - XR'Z #
ZR'X « ZTR'Z+G )

u=GZViy-Xp), (1.2.2)
p = XVIXyXvly. (1.2.3)

In the case when matrices G and R are known, f° is the BLUE of B and u
is the BLUP of u. Unfortunately, usually G and R are unknown.

1.3. REML estimation

If G and R are unknown we have to estimate elements of these matrices. One
of the possible methods of estimation is the REML method. REML operates on
the likelihood of linear functions of the data vector with expectations zero, the
so-called error contrasts, or, equivalently, on the part of the likelihood (of the
data vector) which is independent of fixed effects. This results in the loss in
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degrees of freedom due to fitting of fixed effects (Patterson and Thompson, 1971
or Corbeil and Searle, 1976). For y ~ NXB ,V), the log likelihood is (see e.g.
Harville, 1977)

logL = —(1/2) [const + log| V| + log|X'VX| + (y - XB)'V iy - XP)]. (1.3.1)

Using matrix equalities given by Harville (1977) and Searle (1979), (1.8.1) can
be rewritten as:

-2log L = const + log|R| + log|G| + log|C| + yPy,
where C is the coefficient matrix in (1.2.1) and
P=-Vv!_viIXxvxxv'.
There are many ways of finding the parameters vector which minimize the

function -2logz. Meyer (1989) described some of them for special matrices R

and G. In the general case the minimization is usually performed by iterative
solving of the set of equations

SY =q,

where exc matrix S and ¢ dimensional vector q have the elements
s;=tr(PV;PV), 1,j=12,...,

q;=yPVPy, i=12,...c,

with V =

Y;V; . Here tr(A) denotes the trace of the matrix A.
=1

The estimators of the parameters y; obtained by the REML method are
quadratic functions of the observations vector, therefore they are even functions
of the observation vector. Moreover, they are invariant with respect to expected
value of the vector y because they do not depend on the vector . Hence Xp’,
where B° is given by (1.2.3) with elements of the matrix V estimated by REML
method, is unbiased and consistent estimator of Xp and have the asymptotic

normal distribution (see Kackar and Harville, 1981 or Mardia and Marshall,
1984).

2. Multiresponse model

The purpose of this chapter is to show how the theory of mixed linear model
can be applied for estimation and prediction in the mixed multiresponse model.
One of the possible ways is the transformation of the mixed multiresponse model
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to the form of mixed linear model in which the interpretation of the parameters
is preserved.

We will use the following notation:
A®B - denotes the Kronecker product of the matrices A and B,
cs(A) (column string of the matrix A) is the vector formed from the columns of
the matrix A,

t
col(A,) = [A), A,..., AT,
i=1

A0 .0

i 0 ...0
diag(a) = [ B2
ia

0 0 ..A

The mixed multiresponse model is introduced below similarly as the fixed
multiresponse model in the paper by Walkowiak (1987).

Let ¢ be the number of traits observed in the experiment. Let n experimental
units be grouped in £ disjoint sets such that on all n; units in the i-th set, i =
1,...,k, the same ¢; traits (¢; <¢) are observed. The random variables describing
the traits measured on units belonging to the i-th set can be written in the form
of n;xt; dimensional matrix Y; , i=1,...k. -

The linear model for Y; is defined as
Yi = XiBi + ZiUMi + Ei 5

In this formula X is a full column rank known matrix, Z; is a known matrix,
B; is the fixed parameters unknown matrix, U is bx¢ matrix of unobservable
random variables common for each set of experimental units, the matrix M; is
obtained from the identity matrix I, by deleting the columns which numbers are
the numbers of traits not observed on the i-th set of units, E; is the n;x¢; matrix
of random errors.

Let us assume that each row of the matrix U has the distribution N(0,X,)
and each row of the matrix E;, i = 1,2,...,k, has the distribution N(0, M:X,M;)
where 2, and X, are unknown ¢x¢ positive definite matrices. Moreover, let us
assume that rows of the matrices Uand E;, i = 1,2,...,k, are mutually independent

within each matrix and between matrices. Above assumptions and equation
cs(ABC) = (C'®A) cs (B)

(Neudecker, 1969) implies the following forms of the expectation and dispersion
matrices of the matrix Y;:
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E(Y) =XB; ,
D(Y;) = D(cs (Y))) = (M;®Z;)G(M;®Z;) + (MZ,M; ®I".~) s
where
G =D(cs (U)) = =, QL) 2.1)

is the dispersion matrix of the matrix U.

The general model describing random variables observed in the whole experi-
ment may be constructed by utilizing the method of transforming the multivari-
ate model to a univariate model (Searle, 1978). This model has the form

k k k k k
y = col(es(Y;)) = diag(I, ®X,) col(es(B;)) + col(M;®Z,)cs(U) + col(cs(E;))
i=1 =1 i=1 i i

= 1= 1=

or
y=Xp+Zu +e, (2.2)
where

k k k
X - diagl, @X), B = col(cs(B;), Z=colMiGZ;),
i=1 ! =1 i=1

k
u=cs(U), e=collcs(E,)).
i=1

The vector of expected values and the dispersion matrix of the vector y have
the following forms:

E(y)=XB,
D(y) =V =ZDW)Z' + D(e) .
Then
V=ZGZ +R, (2.3)
where
k
R = diag(M;Z,M; ®L,). (2.4)

=1

Our assumptions imply that vectors y, u and e have normal distributions.
From (2.2) we can see that the above transformations reduce the mixed multire-
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sponse model to the form of mixed model (1.1.1) with special forms of the matrices
X, Z and vectors B, u and e.
Now we will demonstrate, that the dispersion matrix (2.3) can be transformed

to the form (1.1.2). It is easy to show that there exist real numbers A, ,

Osr<gs=st, such that

t

-1
3, = E 2 MgZ,, where X, =(e.+e)e.+e), e,=0,
r=0gq

=0 g=r+1

and e, is the ¢ dimensional vector with the /-th coordinate equal to 1 and any
other equal to 0. Hence matrix G given in (2.1) has the form

¢

t-1 t-1 t
G=(2 D hgZy )OL =Y Y&, OL). (2.5)

r=0q=r+1 r=0g=r+1

Similarly, there exist real numbers 6,, , 0<r<q=t, such that

Fg=?

t-1 ¢
=Y Y duE,
r=0g=r+1

and matrix R defined in (2.4) is the following

74 =1 % Gl

R =diagMi(}, 3 8,%)M@L,)=3 ¥ o, dnag«M =, M;)eL,) .

r=0g=r+1 r=0g=r+1 i=1

From (2.5) we have

]
ZGZ - tE i MgZ (2, @1 Z

r=0g=r+1

so that the matrix V given in (2.3) can be written as

—

t— t-1 ¢

t
V= Y M Z(EB)Z + > D5, dlag((M ¥, M;)@L, ) =

i=1

Il

r=0g=r+1 r=0g=r+1

t-1 ¢

=Y Y gl Z((e, + &) OL)IZ((e, + €,) ®T,)] +

r=0g=r+1
k
¢ E 2 drq [dlag(M (e, +e,) I, )][dlag(M’ (e, + e,) ®L, )T
r=0g=r+1

Hence
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Cc
V=YV, 2.6)
J=1

where
c=2t(t+1) /2 =t(¢t+1) ,
Y1 =201 Y2 = )\021""Yt(t+1)/2 = 7‘(:4): >
Yeee+1) /2)e1 = O015-++5 Yeea1) = Oe=1)¢ »

Vi =[Z((e, + e)) ®L,)IZ((e, + €)) ®L, )Y .

Vierny 12 = (e, + &) QI )NZ((e,_; + e,) L),

k k
V(t(t+1) /241 = [dlE:g(M; (eo + el) ®Ini )][dlal‘g( M; (eo + el) ®Ini)], »

k k
V. = [diag(M;(e,., + e,) ®L, )l[diag(M;(e,_; + e,) ®L, )] .
i=1 =1

From the last formulas we can see that matrices Vj,j = 1,2,...,c, are nonne-

gative definite. Therefore, and because of (2.6), the considered multiresponse
model belongs to the known in the literature (see e.g. Kala, 1981) class of general
linear models.

According to the theory given in earlier paragraphs unbiased linear estimator
of P is given as in (1.2.3), i.e.

B = XV'X)'X'V'y
and unbiased linear predictor of u is given as in (1.2.2), i.e.
u=GZViy-Xp) .
In order to estimate unknown matrices G and R, parameters y; in (2.6) can
be estimated utilizing the REML method described in section 1.3.

The special case of the theory described in this paper is illustrated by numeri-
cal example given by Molinski et al. (1993).
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Estymacja i predykcja w mieszanym modelu
wieloreakcjowym

Streszczenie

W pracy opisana jest metoda konstrukcji mieszanego modelu wieloreakgjowego
niekompletnego, tzn. modelu z parametrami stalymi i losowymi, opisujacego
wielocechowy eksperyment, w ktérym rézne podzbiory cech obserwowane sa na
roztacznych podzbiorach jednostek eksperymentalnych. Wyprowadzone sa takze wzory
estymatoréw parametréw stalych i predyktoréw parametréw losowych z
zastosowaniem estymatoréw komponentéw wariancji obliczonych metoda REML.

Stowa kluczowe: model mieszany, model wieloreakcjowy, najlepszy liniowy nieob-
cigzony estymator (BLUE), najlepszy liniowy nieobciazony predyktor
(BLUP), metoda REML.



